Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30.687
Filtrar
1.
Environ Sci Technol ; 58(15): 6670-6681, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564406

RESUMO

The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.


Assuntos
Oxidação Anaeróbia da Amônia , Bactérias , Anaerobiose , Bactérias/metabolismo , Ácidos Graxos/metabolismo , Estresse Salino , Oxirredução , Salinidade , Nitrogênio/metabolismo
2.
Sci Total Environ ; 926: 172122, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38569973

RESUMO

Photodegradation via ultraviolet (UV) radiation is an important factor driving plant litter decomposition. Despite increasing attention to the role of UV photodegradation in litter decomposition, the specific impact of UV radiation on the plant litter decomposition stage within biogeochemical cycles remains unclear at regional and global scales. To clarify the variation rules of magnitude of UV effect on plant litter decomposition and their regulatory factors, we conducted a meta-analysis based on 54 published papers. Our results indicated that UV significantly promoted the mass loss of litter by facilitating decay of carbonaceous fractions and release of nitrogen and phosphorus. The promotion effect varied linearly or non-linearly with the time that litter exposed to UV, and with climatic factors. The UV effect on litter decomposition decreased first than increased on precipitation and temperature gradients, reaching its minimum in the area with a precipitation of 400-600 mm, and a temperature of 15-20 °C. This trend might be attributed to a potential equilibrium between the photofacilitation and photo-inhibition effects of UV under this condition. This variation in UV effect on precipitation gradient was in agreement with the fact that UV photodegradation effect was weakest in grassland ecosystems compared to that in forest and desert ecosystems. In addition, initial litter quality significantly influenced the magnitude of UV effect, but had no influence on the correlation between UV effect and climate gradient. Litter with lower initial nitrogen and lignin content shown a greater photodegradation effect, whereas those with higher hemicellulose and cellulose content had a greater photodegradation effect. Our study provides a comprehensive understanding of photodegradation effect on plant litter decomposition, indicates potentially substantial impacts of global enhancements of litter decomposition by UV, and highlights the necessity to quantify the contribution of photochemical minerallization pathway and microbial degradation pathway in litter decomposition.


Assuntos
Ecossistema , Raios Ultravioleta , Folhas de Planta/metabolismo , Plantas/metabolismo , Clima Desértico , Nitrogênio/metabolismo
3.
Chemosphere ; 355: 141832, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38570044

RESUMO

Climate change and plastic pollution are likely the most relevant challenges for the environment in the 21st century. Developing cost-effective technologies for the bioconversion of methane (CH4) into polyhydroxyalkanoates (PHAs) could simultaneously mitigate CH4 emissions and boost the commercialization of biodegradable polymers. Despite the fact that the role of temperature, nitrogen deprivation, CH4:O2 ratio or micronutrients availability on the PHA accumulation capacity of methanotrophs has been carefully explored, there is still a need for optimization of the CH4-to-PHA bioconversion process prior to becoming a feasible platform in future biorefineries. In this study, the influence of different cultivation broth pH values (5.5, 7, 8.5 and 10) on bacterial biomass growth, CH4 bioconversion rate, PHA accumulation capacity and bacterial community structure was investigated in a stirred tank bioreactor under nitrogen deprivation conditions. Higher CH4 elimination rates were obtained at increasing pH, with a maximum value of 50.4 ± 2.7 g CH4·m-3·h-1 observed at pH 8.5. This was likely mediated by an increased ionic strength in the mineral medium, which enhanced the gas-liquid mass transfer. Interestingly, higher PHB accumulations were observed at decreasing pH, with the highest PHB contents recorded at a pH 5.5 (43.7 ± 3.4 %w·w-1). The strong selective pressure of low pH towards the growth of Type II methanotrophic bacteria could explain this finding. The genus Methylocystis increased its abundance from 34 % up to 85 and 90 % at pH 5.5 and 7, respectively. On the contrary, Methylocystis was less abundant in the community enriched at pH 8.5 (14 %). The accumulation of intracellular PHB as energy and carbon storage material allowed the maintenance of high CH4 biodegradation rates during 48 h after complete nitrogen deprivation. The results here obtained demonstrated for the first time a crucial and multifactorial role of pH on the bioconversion performance of CH4 into PHA.


Assuntos
Methylocystaceae , Poli-Hidroxialcanoatos , Poli-Hidroxibutiratos , Carbono/metabolismo , Metano/metabolismo , Methylocystaceae/metabolismo , Nitrogênio/metabolismo , Concentração de Íons de Hidrogênio
4.
Ecotoxicol Environ Saf ; 275: 116268, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569319

RESUMO

Legume-based rotation is commonly recognized for its mitigation efficiency of greenhouse gas (GHG) emissions. However, variations in GHG emission-associated metabolic functions during the legume-vegetable rotation process remain largely uncharacterized. Accordingly, a soybean-radish rotation field experiment was designed to clarify the responses of microbial communities and their GHG emission-associated functional metabolism through metagenomics. The results showed that the contents of soil organic carbon and total phosphorus significantly decreased during the soybean-radish process (P < 0.05), while soil total potassium content and bacterial richness and diversity significantly increased (P < 0.05). Moreover, the predominant bacterial phyla varied, with a decrease in the relative abundance of Proteobacteria and an increase in the relative abundance of Acidobacteria, Gemmatimonadetes, and Chloroflexi. Metagenomics clarified that bacterial carbohydrate metabolism substantially increased during the rotation process, whereas formaldehyde assimilation, methanogenesis, nitrification, and dissimilatory nitrate reduction decreased (P < 0.05). Specifically, the expression of phosphate acetyltransferase (functional methanogenesis gene, pta) and nitrate reductase gamma subunit (functional dissimilatory nitrate reduction gene, narI) was inhibited, indicating of low methane production and nitrogen metabolism. Additionally, the partial least squares path model revealed that the Shannon diversity index was negatively correlated with methane and nitrogen metabolism (P < 0.01), further demonstrating that the response of the soil bacterial microbiome responses are closely linked with GHG-associated metabolism during the soybean-radish rotation process. Collectively, our findings shed light on the responses of soil microbial communities to functional metabolism associated with GHG emissions and provide important insights to mitigate GHG emissions during the rotational cropping of legumes and vegetables.


Assuntos
Fabaceae , Gases de Efeito Estufa , Verduras/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Nitratos , Carbono , Solo , Metano/análise , Nitrogênio/metabolismo , Dióxido de Carbono/análise , Agricultura
5.
J Environ Manage ; 357: 120843, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38588621

RESUMO

Nitrite-dependent anaerobic methane oxidation (n-DAMO) is a novel denitrification process that simultaneously further removes and utilizes methane from anaerobic effluent from wastewater treatment plants. However, the metabolic activity of n-DAMO bacteria is relative low for practical application. In this study, conductive magnetite was added into lab-scale sequencing batch reactor inoculated with n-DAMO bacteria to study the influence on n-DAMO process. With magnetite amendment, the nitrogen removal rate could reach 34.9 mg N·L-1d-1, nearly 2.5 times more than that of control group. Magnetite significantly facilitated the interspecies electron transfer and built electrically connected community with high capacitance. Enzymatic activities of electron transport chain were significantly elevated. Functional gene expression and enzyme activities associated with nitrogen and methane metabolism had been highly up-regulated. These results not only propose a useful strategy in n-DAMO application but also provide insights into the stimulating mechanism of magnetite in n-DAMO process.


Assuntos
Óxido Ferroso-Férrico , Nitritos , Nitritos/metabolismo , Transporte de Elétrons , Anaerobiose , Metano , Elétrons , Desnitrificação , Oxirredução , Bactérias/metabolismo , Bactérias Anaeróbias/metabolismo , Nitrogênio/metabolismo , Reatores Biológicos/microbiologia
6.
Science ; 384(6692): 217-222, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38603509

RESUMO

Symbiotic interactions were key to the evolution of chloroplast and mitochondria organelles, which mediate carbon and energy metabolism in eukaryotes. Biological nitrogen fixation, the reduction of abundant atmospheric nitrogen gas (N2) to biologically available ammonia, is a key metabolic process performed exclusively by prokaryotes. Candidatus Atelocyanobacterium thalassa, or UCYN-A, is a metabolically streamlined N2-fixing cyanobacterium previously reported to be an endosymbiont of a marine unicellular alga. Here we show that UCYN-A has been tightly integrated into algal cell architecture and organellar division and that it imports proteins encoded by the algal genome. These are characteristics of organelles and show that UCYN-A has evolved beyond endosymbiosis and functions as an early evolutionary stage N2-fixing organelle, or "nitroplast."


Assuntos
Cianobactérias , Haptófitas , Mitocôndrias , Fixação de Nitrogênio , Nitrogênio , Cianobactérias/genética , Cianobactérias/metabolismo , Haptófitas/microbiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio/genética , Água do Mar/microbiologia , Simbiose , Mitocôndrias/metabolismo , Cloroplastos/metabolismo
7.
Sci Rep ; 14(1): 8875, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632431

RESUMO

Nitrogen (N) is an essential element for plant growth, and its deficiency influences plants at several physiological and gene expression levels. Barley (Hordeum vulgare) is one of the most important food grains from the Poaceae family and one of the most important staple food crops. However, the seed yield is limited by a number of stresses, the most important of which is the insufficient use of N. Thus, there is a need to develop N-use effective cultivars. In this study, comparative physiological and molecular analyses were performed using leaf and root tissues from 10 locally grown barley cultivars. The expression levels of nitrate transporters, HvNRT2 genes, were analyzed in the leaf and root tissues of N-deficient (ND) treatments of barley cultivars after 7 and 14 days following ND treatment as compared to the normal condition. Based on the correlation between the traits, root length (RL) had a positive and highly significant correlation with fresh leaf weight (FLW) and ascorbate peroxidase (APX) concentration in roots, indicating a direct root and leaf relationship with the plant development under ND. From the physiological aspects, ND enhanced carotenoids, chlorophylls a/b (Chla/b), total chlorophyll (TCH), leaf antioxidant enzymes such as ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT), and root antioxidant enzymes (APX and POD) in the Sahra cultivar. The expression levels of HvNRT2.1, HvNRT2.2, and HvNRT2.4 genes were up-regulated under ND conditions. For the morphological traits, ND maintained root dry weight among the cultivars, except for Sahra. Among the studied cultivars, Sahra responded well to ND stress, making it a suitable candidate for barely improvement programs. These findings may help to better understand the mechanism of ND tolerance and thus lead to the development of cultivars with improved nitrogen use efficiency (NUE) in barley.


Assuntos
Hordeum , Hordeum/genética , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Nitrogênio/metabolismo , Peroxidases/metabolismo , Expressão Gênica , Raízes de Plantas/metabolismo
8.
Planta ; 259(6): 127, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637411

RESUMO

MAIN CONCLUSION: Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.


Assuntos
Arabidopsis , Oryza , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Triticum , Nitrogênio/metabolismo , Fertilizantes , Arabidopsis/metabolismo
9.
BMC Plant Biol ; 24(1): 285, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627617

RESUMO

Crop roots are colonized by large numbers of microorganisms, collectively known as the root-microbiome, which modulate plant growth, development and contribute to elemental nutrient uptake. In conditions of nitrogen limitation, the over-expressed Calcineurin B-like interacting protein kinase 2 (OsCIPK2) gene with root-specific promoter (RC) has been shown to enhance growth and nitrogen uptake in rice. Analysis of root-associated bacteria through high-throughput sequencing revealed that OsCIPK2 has a significant impact on the diversity of the root microbial community under low nitrogen stress. The quantification of nifH gene expression demonstrated a significant enhancement in nitrogen-fixing capabilities in the roots of RC transgenetic rice. Synthetic microbial communities (SynCom) consisting of six nitrogen-fixing bacterial strains were observed to be enriched in the roots of RC, leading to a substantial improvement in rice growth and nitrogen uptake in nitrogen-deficient soils. Forty and twenty-three metabolites exhibiting differential abundance were identified in the roots and rhizosphere soils of RC transgenic rice compared to wild-type (WT) rice. These findings suggest that OSCIPK2 plays a role in restructuring the microbial community in the roots through the regulation of metabolite synthesis and secretion. Further experiments involving the exogenous addition of citric acid revealed that an optimal concentration of this compound facilitated the growth of nitrogen-fixing bacteria and substantially augmented their population in the soil, highlighting the importance of citric acid in promoting nitrogen fixation under conditions of low nitrogen availability. These findings suggest that OsCIPK2 plays a role in enhancing nitrogen uptake by rice plants from the soil by influencing the assembly of root microbial communities, thereby offering valuable insights for enhancing nitrogen utilization in rice cultivation.


Assuntos
Bactérias Fixadoras de Nitrogênio , Oryza , Raízes de Plantas/metabolismo , Nitrogênio/metabolismo , Bactérias Fixadoras de Nitrogênio/metabolismo , Solo , Rizosfera , Ácido Cítrico , Microbiologia do Solo
10.
PLoS One ; 19(4): e0301108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38603696

RESUMO

This field experiment aimed to investigate the effects of different ratios of organic and inorganic fertilizers with maintaining equal nitrogen application rates on the yield, quality, and nitrogen uptake efficiency of Dioscorea polystachya (yam). Six treatments were set, including a control without fertilizer (CK), sole application of chemical fertilizer (CF), sole application of organic fertilizer (OM), 25% organic fertilizer + 75% chemical fertilizer (25%OM + 75%CF), 50% organic fertilizer + 50% chemical fertilizer (50%OM + 50%CF), and 75% organic fertilizer + 25% chemical fertilizer (75%OM + 25%CF). The experiment followed a randomized complete block design with three replications. Various yield parameters, morphology, quality indicators, and nitrogen utilization were analyzed to assess the differences among treatments. The results indicated that all fertilizer treatments significantly increased the yield, morphology, quality indicators, and nitrogen utilization efficiency compared to the control. Specifically, 25%OM + 75%CF achieved the highest yield of 31.96 t hm-2, which was not significantly different from CF (30.18 t hm-2). 25%OM + 75%CF exhibited the highest values at 69.23 cm in tuber length and 75.86% in commodity rate, 3.14% and 1.57% higher than CF respectively. Tuber thickness and fresh weight of 25%OM + 75%CF showed no significant differences from CF, while OM and 50%OM+50%CF exhibited varying degrees of reduction compared to CF. Applying fertilizer significantly enhanced total sugar, starch, crude protein, total amino acid, and ash contents of D. polystachya (except ash content between CK and OM). Applying organic fertilizer increased the total sugar, starch, crude protein, total amino acid, and ash contents in varying degrees when compared with CF. The treatment with 25%OM+75%CF exhibited the highest increases of 6.31%, 3.78%, 18.40%, 29.70%, and 10%, respectively. Nitrogen content in different plant parts followed the sequence of tuber > leaves > stems > aerial stem, with the highest nitrogen accumulation observed in 25%OM + 75%CF treatment. Nitrogen harvest index did not show significant differences among treatments, fluctuating between 0.69 and 0.74. The nitrogen apparent utilization efficiency was highest in 25%OM + 75%CF (9.89%), followed by CF (9.09%), both significantly higher than OM (5.32%) and 50%OM + 50%CF (6.69%). The nitrogen agronomic efficiency varied significantly among treatments, with 25%OM + 75%CF (33.93 kg kg-1) being the highest, followed by CF (29.68 kg kg-1), 50%OM + 50%CF (21.82 kg kg-1), and OM (11.85 kg kg-1). Nitrogen partial factor productivity was highest in 25%OM + 75%CF treatment (76.37 kg kg-1), followed by CF (72.11 kg kg-1), both significantly higher than 50%OM + 50%CF (64.25 kg kg-1) and OM (54.29 kg kg-1), with OM exhibiting significantly lower values compared to other treatments. In conclusion, the combined application of organic and inorganic fertilizers can effectively enhance the yield, quality, and nitrogen utilization efficiency of D. polystachya. Particularly, the treatment with 25% organic fertilizer and 75% chemical fertilizer showed the most promising results.


Assuntos
Dioscorea , Solo , Solo/química , Fertilizantes , Agricultura/métodos , Compostos Orgânicos , Nitrogênio/metabolismo , Aminoácidos , Amido , Açúcares
11.
Sci Rep ; 14(1): 7899, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570566

RESUMO

Hutchison's niche theory suggests that coexisting competing species occupy non-overlapping hypervolumes, which are theoretical spaces encompassing more than three dimensions, within an n-dimensional space. The analysis of multiple stable isotopes can be used to test these ideas where each isotope can be considered a dimension of niche space. These hypervolumes may change over time in response to variation in behaviour or habitat, within or among species, consequently changing the niche space itself. Here, we use isotopic values of carbon and nitrogen of ten amino acids, as well as sulphur isotopic values, to produce multi-isotope models to examine niche segregation among an assemblage of five coexisting seabird species (ancient murrelet Synthliboramphus antiquus, double-crested cormorant Phalacrocorax auritus, Leach's storm-petrel Oceanodrama leucorhoa, rhinoceros auklet Cerorhinca monocerata, pelagic cormorant Phalacrocorax pelagicus) that inhabit coastal British Columbia. When only one or two isotope dimensions were considered, the five species overlapped considerably, but segregation increased in more dimensions, but often in complex ways. Thus, each of the five species occupied their own isotopic hypervolume (niche), but that became apparent only when factoring the increased information from sulphur and amino acid specific isotope values, rather than just relying on proxies of δ15N and δ13C alone. For cormorants, there was reduction of niche size for both species consistent with a decline in their dominant prey, Pacific herring Clupea pallasii, from 1970 to 2006. Consistent with niche theory, cormorant species showed segregation across time, with the double-crested demonstrating a marked change in diet in response to prey shifts in a higher dimensional space. In brief, incorporating multiple isotopes (sulfur, PC1 of δ15N [baselines], PC2 of δ15N [trophic position], PC1 and PC2 of δ13C) metrics allowed us to infer changes and differences in food web topology that were not apparent from classic carbon-nitrogen biplots.


Assuntos
Aminoácidos , Charadriiformes , Animais , Aminoácidos/metabolismo , Isótopos/metabolismo , Aves/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo , Enxofre/metabolismo , Isótopos de Nitrogênio/metabolismo , Isótopos de Carbono/metabolismo
12.
Ecotoxicol Environ Saf ; 273: 116157, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430578

RESUMO

Arbuscular mycorrhizal fungi (AMF) and plant growth-promoting bacteria enhance plant tolerance to abiotic stress and promote plant growth in contaminated soil. However, the interaction mechanism between rhizosphere microbial communities under chromium (Cr) stress remains unclear. This study conducted a greenhouse pot experiment and metagenomics analysis to reveal the comprehensive effects of the interaction between AMF (Rhizophagus intraradices) and nitrogen-N metabolizing plant growth promoters on the growth of Iris tectorum. The results showed that AMF significantly increased the biomass and nutrient levels of I. tectorum in contaminated soil and decreased the content of Cr in the soil. Metagenomics analysis revealed that the structure and composition of the rhizosphere microbial community involved in nitrogen metabolism changed significantly after inoculation with AMF under Cr stress. Functional genes related to soil nitrogen mineralization (gltB, gltD, gdhA, ureC, and glnA), nitrate reduction to ammonium (nirB, nrfA, and nasA), and soil nitrogen assimilation (NRT, nrtA, and nrtC) were up-regulated in the N-metabolizing microbial community. In contrast, the abundance of functional genes involved in denitrification (nirK and narI) was down-regulated. In addition, the inoculation of AMF regulates the synergies between the N-metabolic rhizosphere microbial communities and enhances the complexity and stability of the rhizosphere ecological network. This study provides a basis for improving plant tolerance to heavy metal stress by regulating the functional abundance of N-metabolizing plant growth-promoting bacteria through AMF inoculation. It helps to understand the potential mechanism of wetland plant remediation of Cr-contaminated soil.


Assuntos
Iris (Planta) , Micorrizas , Micorrizas/metabolismo , Cromo/metabolismo , Iris (Planta)/genética , Plantas , Bactérias , Solo/química , Nitrogênio/metabolismo , Raízes de Plantas , Fungos
13.
Sci Total Environ ; 926: 171900, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38527552

RESUMO

The long-stabilized mainstream partial nitritation/Anammox (PN/A) process continues to encounter significant challenges from nitrite-oxidizing bacteria (NOB). Therefore, this study aimed to determine an efficient, rapid, and easily implementable strategy for inhibiting NOB. A laboratory-scale reactor was operated continuously for 325 days, experiencing NOB outbreak in mainstream and recovery with simulated sidestream support. The results show that direct inhibitory strategies including intermittent aeration and approximately 35 mg/L free ammonia had unusual weak inhibitory effects on NOB activity. Subsequently, the exogenous Anammox from sidestream employed as a competitive bio-augmentation approach rapidly inhibited NOB dynamics. Evidence suggests that the damaged hydroxyapatite granules under low pH conditions might have contributed to NOB dominance by diminishing Anammox bacteria activity, thereby creating a substrate-rich environment favoring NOB survival. In contrast, the introduction of exogenous Candidatus Kuenenia facilitated the nitrogen removal efficiency from 32.5 % to over 80 %. This coincided with a decrease in the relative abundance of Nitrospira from 16.5 % to 2.7 % and NOB activity from 0.34 to 0.07 g N/(g mixed liquor volatile suspended solid)/d. Metagenomic analysis reveals a decrease in the functional potential of most nitrite transport proteins, coupled with a significant increase in eukaryotic-like serine/threonine-protein kinase involved in cellular regulation, during the Anammox activity recovery. This study's findings reveal the feasibility of the bio-augmentation based on substrate competition, wherein sidestream processes support the mainstream PN/A integration, offering significant potential for practical applications.


Assuntos
Compostos de Amônio , Nitritos , Nitritos/metabolismo , Oxirredução , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Nitrogênio/metabolismo , Esgotos/microbiologia , Compostos de Amônio/metabolismo
14.
Sci Total Environ ; 926: 171980, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38537814

RESUMO

Granular activated carbon (GAC), a porous carbon-based material, provides increased attachment space for functional microorganisms and enhances nitrogen removal by facilitating extracellular electron transfer in the anammox process. This study investigates the effects of GAC on the biosynthesis of microbial extracellular secretions (MESs) and explores the roles of these secretions in anammox activities. Four lab-scale reactors were operated: two downstream UASB reactors (D1 and D2) receiving effluents from the upstream UASB reactors (U1: no-GAC, U2: yes-GAC). Our results indicate that MESs were enhanced with the addition of GAC. The effluent from U2 exhibited a 59.62 % higher amino acid content than that from U1. These secretions contributed to an increase in the nitrogen loading rate (NLR) in the downstream reactors. Specifically, NLR in D1 increased from 130.5 to 142.7 g N/m3/day, and in D2, it escalated from 137.5 to 202.8 g N/m3/day, likely through acting as cross-feeding substrates or vital nutrients. D2 also showed increased anammox bacterial activity, enriched Ca. Brocadia population and hao gene abundance. Furthermore, this study revealed that D2 sludge has significantly higher extracellular polymeric substances (EPS) (48.71 mg/g VSS) and a larger average granule size (1.201 ± 0.119 mm) compared to D1 sludge. Overall, GAC-stimulated MESs may have contributed to the enhanced performance of the anammox process.


Assuntos
Carvão Vegetal , Esgotos , Esgotos/microbiologia , Carvão Vegetal/metabolismo , Oxidação Anaeróbia da Amônia , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Anaerobiose , Nitrogênio/metabolismo , Oxirredução
15.
Sci Total Environ ; 926: 172073, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38554959

RESUMO

Nitrogen is an essential nutrient in the environment that exists in multiple oxidation states in nature. Numerous microbial processes are involved in its transformation. Knowledge about very complex N cycling has been growing rapidly in recent years, with new information about associated isotope effects and about the microbes involved in particular processes. Furthermore, molecular methods that are able to detect and quantify particular processes are being developed, applied and combined with other analytical approaches, which opens up new opportunities to enhance understanding of nitrogen transformation pathways. This review presents a summary of the microbial nitrogen transformation, including the respective isotope effects of nitrogen and oxygen on different nitrogen-bearing compounds (including nitrates, nitrites, ammonia and nitrous oxide), and the microbiological characteristics of these processes. It is supplemented by an overview of molecular methods applied for detecting and quantifying the activity of particular enzymes involved in N transformation pathways. This summary should help in the planning and interpretation of complex research studies applying isotope analyses of different N compounds and combining microbiological and isotopic methods in tracking complex N cycling, and in the integration of these results in modelling approaches.


Assuntos
Desnitrificação , Nitrogênio , Nitrogênio/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Isótopos , Isótopos de Nitrogênio
16.
Microbiol Spectr ; 12(4): e0333523, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38426746

RESUMO

Seagrasses can enhance nutrient mobilization in their rhizosphere via complex interactions with sediment redox conditions and microbial populations. Yet, limited knowledge exists on how seagrass-derived rhizosphere dynamics affect nitrogen cycling. Using optode and gel-sampler-based chemical imaging, we show that radial O2 loss (ROL) from rhizomes and roots leads to the formation of redox gradients around below-ground tissues of seagrass (Zostera marina), which are co-localized with regions of high ammonium concentrations in the rhizosphere. Combining such chemical imaging with fine-scale sampling for microbial community and gene expression analyses indicated that multiple biogeochemical pathways and microbial players can lead to high ammonium concentration within the oxidized regions of the seagrass rhizosphere. Symbiotic N2-fixing bacteria (Bradyrhizobium) were particularly abundant and expressed the diazotroph functional marker gene nifH in Z. marina rhizosphere areas with high ammonium concentrations. Such an association between Z. marina and Bradyrhizobium can facilitate ammonium mobilization, the preferred nitrogen source for seagrasses, enhancing seagrass productivity within nitrogen-limited environments. ROL also caused strong gradients of sulfide at anoxic/oxic interfaces in rhizosphere areas, where we found enhanced nifH transcription by sulfate-reducing bacteria. Furthermore, we found a high abundance of methylotrophic and sulfide-oxidizing bacteria in rhizosphere areas, where O2 was released from seagrass rhizomes and roots. These bacteria could play a beneficial role for the plants in terms of their methane and sulfide oxidation, as well as their formation of growth factors and phytohormones. ROL from below-ground tissues of seagrass, thus, seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations. IMPORTANCE: Seagrasses are important marine habitats providing several ecosystem services in coastal waters worldwide, such as enhancing marine biodiversity and mitigating climate change through efficient carbon sequestration. Notably, the fitness of seagrasses is affected by plant-microbe interactions. However, these microscale interactions are challenging to study and large knowledge gaps prevail. Our study shows that redox microgradients in the rhizosphere of seagrass select for a unique microbial community that can enhance the ammonium availability for seagrass. We provide first experimental evidence that Rhizobia, including the symbiotic N2-fixing bacteria Bradyrhizobium, can contribute to the bacterial ammonium production in the seagrass rhizosphere. The release of O2 from rhizomes and roots also caused gradients of sulfide in rhizosphere areas with enhanced nifH transcription by sulfate-reducing bacteria. O2 release from seagrass root systems thus seems crucial for ammonium production in the rhizosphere via stimulation of multiple diazotrophic associations.


Assuntos
Ecossistema , Rizosfera , Bactérias/genética , Bactérias/metabolismo , Oxirredução , Sulfetos/metabolismo , Nitrogênio/metabolismo , Sulfatos/metabolismo
17.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38513256

RESUMO

Recent studies have demonstrated regional differences in marine ecosystem C:N:P with implications for carbon and nutrient cycles. Due to strong co-variance, temperature and nutrient stress explain variability in C:N:P equally well. A reductionistic approach can link changes in individual environmental drivers with changes in biochemical traits and cell C:N:P. Thus, we quantified effects of temperature and nutrient stress on Synechococcus chemistry using laboratory chemostats, chemical analyses, and data-independent acquisition mass spectrometry proteomics. Nutrient supply accounted for most C:N:Pcell variability and induced tradeoffs between nutrient acquisition and ribosomal proteins. High temperature prompted heat-shock, whereas thermal effects via the "translation-compensation hypothesis" were only seen under P-stress. A Nonparametric Bayesian Local Clustering algorithm suggested that changes in lipopolysaccharides, peptidoglycans, and C-rich compatible solutes may also contribute to C:N:P regulation. Physiological responses match field-based trends in ecosystem stoichiometry and suggest a hierarchical environmental regulation of current and future ocean C:N:P.


Assuntos
Ecossistema , Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Proteoma/metabolismo , Teorema de Bayes , Temperatura , Nitrogênio/metabolismo
18.
Chemosphere ; 355: 141774, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522670

RESUMO

The enrichment of anammox bacteria is a key issue in the application of anammox processes. A new type of reactor - anaerobic baffle biofilm reactor (ABBR) developed from anaerobic baffle reactor (ABR) was filled with columnar packings and established for effective enrichment of anammox bacteria. The flow field analysis showed that, compared with ABR, ABBR narrowed the dead zone so as to improve the substrate transferring performances. Two ABBRs with different types of columnar packings (Packings 1 and Packings 2) were constructed to culture anammox biofilms. Packings 1 consisted of the single-form honeycomb carriers while Packings 2 was modular composite packings consisting of non-woven fabric and honeycomb carriers. The effects of different types of columnar packings on microbial community and nitrogen removal were studied. The ABBR filled with Packings 2 had a higher retention rate of biomass than the ABBR filled with Packings 1, making the anammox start-up period be shortened by 21.28%. The enrichment of anammox bacteria were achieved and the dominant anammox bacteria were Candidatus Brocadia in both R1 and R2. However, there were four genera of anammox bacteria in R2 and one genus of anammox bacteria in R1, and the cell density of anammox bacteria in R2 was 95% higher than that in R1. R2 has the advantage of maintaining excellent and stable nitrogen removal performance at high nitrogen loading rate. The results revealed that the packings composed of two types of carriers may have a better enrichment effect on anammox bacteria. This study is of great significance for the rapid enrichment of anammox bacteria and the technical promotion of anammox process.


Assuntos
Reatores Biológicos , Microbiota , Anaerobiose , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Oxidação Anaeróbia da Amônia , Bactérias/metabolismo , Biofilmes , Nitrogênio/metabolismo , Oxirredução , Desnitrificação
19.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38526235

RESUMO

Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.


Assuntos
Fixação de Nitrogênio , Nitrogenase , Nitrogenase/genética , Nitrogenase/química , Nitrogenase/metabolismo , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo
20.
BMC Plant Biol ; 24(1): 218, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532351

RESUMO

BACKGROUND: In viticulture, iron (Fe) chlorosis is a common abiotic stress that impairs plant development and leads to yield and quality losses. Under low availability of the metal, the applied N form (nitrate and ammonium) can play a role in promoting or mitigating Fe deficiency stresses. However, the processes involved are not clear in grapevine. Therefore, the aim of this study was to investigate the response of two grapevine rootstocks to the interaction between N forms and Fe uptake. This process was evaluated in a hydroponic experiment using two ungrafted grapevine rootstocks Fercal (Vitis berlandieri x V. vinifera) tolerant to deficiency induced Fe chlorosis and Couderc 3309 (V. riparia x V. rupestris) susceptible to deficiency induced Fe chlorosis. RESULTS: The results could differentiate Fe deficiency effects, N-forms effects, and rootstock effects. Interveinal chlorosis of young leaves appeared earlier on 3309 C from the second week of treatment with NO3-/NH4+ (1:0)/-Fe, while Fercal leaves showed less severe symptoms after four weeks of treatment, corresponding to decreased chlorophyll concentrations lowered by 75% in 3309 C and 57% in Fercal. Ferric chelate reductase (FCR) activity was by trend enhanced under Fe deficiency in Fercal with both N combinations, whereas 3309 C showed an increase in FCR activity under Fe deficiency only with NO3-/NH4+ (1:1) treatment. With the transcriptome analysis, Gene Ontology (GO) revealed multiple biological processes and molecular functions that were significantly regulated in grapevine rootstocks under Fe-deficient conditions, with more genes regulated in Fercal responses, especially when both forms of N were supplied. Furthermore, the expression of genes involved in the auxin and abscisic acid metabolic pathways was markedly increased by the equal supply of both forms of N under Fe deficiency conditions. In addition, changes in the expression of genes related to Fe uptake, regulation, and transport reflected the different responses of the two grapevine rootstocks to different N forms. CONCLUSIONS: Results show a clear contribution of N forms to the response of the two grapevine rootstocks under Fe deficiency, highlighting the importance of providing both N forms (nitrate and ammonium) in an appropriate ratio in order to ease the rootstock responses to Fe deficiency.


Assuntos
Compostos de Amônio , Anemia Hipocrômica , Deficiências de Ferro , Vitis , Nitrogênio/metabolismo , Nitratos/metabolismo , Anemia Hipocrômica/metabolismo , Vitis/genética , Compostos de Amônio/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...